
Perl version 5.26.0 documentation - perlrecharclass

Page 1http://perldoc.perl.org

NAME
perlrecharclass - Perl Regular Expression Character Classes

DESCRIPTION
The top level documentation about Perl regular expressions
 is found in perlre.

This manual page discusses the syntax and use of character
 classes in Perl regular expressions.

A character class is a way of denoting a set of characters
 in such a way that one character of the set 
is matched.
 It's important to remember that: matching a character class
 consumes exactly one 
character in the source string. (The source
 string is the string the regular expression is matched 
against.)

There are three types of character classes in Perl regular
 expressions: the dot, backslash sequences,
and the form enclosed in square
 brackets. Keep in mind, though, that often the term "character class" 
is used
 to mean just the bracketed form. Certainly, most Perl documentation does that.

The dot
The dot (or period), . is probably the most used, and certainly
 the most well-known character class. 
By default, a dot matches any
 character, except for the newline. That default can be changed to
 add 
matching the newline by using the single line modifier:
 for the entire regular expression with the /s 
modifier, or
 locally with (?s) (and even globally within the scope of use re '/s'). (The \N 
backslash
 sequence, described
 below, matches any character except newline without regard to the 
single line modifier.)

Here are some examples:

 "a"  =~  /./       # Match
 "."  =~  /./       # Match
 ""   =~  /./       # No match (dot has to match a character)
 "\n" =~  /./       # No match (dot does not match a newline)
 "\n" =~  /./s      # Match (global 'single line' modifier)
 "\n" =~  /(?s:.)/  # Match (local 'single line' modifier)
 "ab" =~  /^.$/     # No match (dot matches one character)

Backslash sequences
A backslash sequence is a sequence of characters, the first one of which is a
 backslash. Perl 
ascribes special meaning to many such sequences, and some of
 these are character classes. That is,
they match a single character each,
 provided that the character belongs to the specific set of 
characters defined
 by the sequence.

Here's a list of the backslash sequences that are character classes. They
 are discussed in more detail
below. (For the backslash sequences that aren't
 character classes, see perlrebackslash.)

 \d             Match a decimal digit character.
 \D             Match a non-decimal-digit character.
 \w             Match a "word" character.
 \W             Match a non-"word" character.
 \s             Match a whitespace character.
 \S             Match a non-whitespace character.
 \h             Match a horizontal whitespace character.
 \H             Match a character that isn't horizontal whitespace.
 \v             Match a vertical whitespace character.
 \V             Match a character that isn't vertical whitespace.
 \N             Match a character that isn't a newline.
 \pP, \p{Prop}  Match a character that has the given Unicode property.
 \PP, \P{Prop}  Match a character that doesn't have the Unicode property



Perl version 5.26.0 documentation - perlrecharclass

Page 2http://perldoc.perl.org

\N

\N, available starting in v5.12, like the dot, matches any
 character that is not a newline. The 
difference is that \N is not influenced
 by the single line regular expression modifier (see The dot 
above). Note
 that the form \N{...} may mean something completely different. When the {...} is a
quantifier, it means to match a non-newline
 character that many times. For example, \N{3} means to
match 3
 non-newlines; \N{5,} means to match 5 or more non-newlines. But if {...}
 is not a legal 
quantifier, it is presumed to be a named character. See charnames for those. For example, none of 
\N{COLON}, \N{4F}, and \N{F4} contain legal quantifiers, so Perl will try to find characters whose

names are respectively COLON, 4F, and F4.

Digits

\d matches a single character considered to be a decimal digit.
 If the /a regular expression modifier 
is in effect, it matches [0-9].
 Otherwise, it
 matches anything that is matched by \p{Digit}, which 
includes [0-9].
 (An unlikely possible exception is that under locale matching rules, the
 current locale 
might not have [0-9] matched by \d, and/or might match
 other characters whose code point is less 
than 256. The only such locale
 definitions that are legal would be to match [0-9] plus another set of

10 consecutive digit characters; anything else would be in violation of
 the C language standard, but 
Perl doesn't currently assume anything in
 regard to this.)

What this means is that unless the /a modifier is in effect \d not
 only matches the digits '0' - '9', but 
also Arabic, Devanagari, and
 digits from other languages. This may cause some confusion, and some
security issues.

Some digits that \d matches look like some of the [0-9] ones, but
 have different values. For example, 
BENGALI DIGIT FOUR (U+09EA) looks
 very much like an ASCII DIGIT EIGHT (U+0038). An 
application that
 is expecting only the ASCII digits might be misled, or if the match is \d+, the matched
string might contain a mixture of digits from
 different writing systems that look like they signify a 
number different
 than they actually do. "num()" in Unicode::UCD can
 be used to safely
 calculate the 
value, returning undef if the input string contains
 such a mixture.

What \p{Digit} means (and hence \d except under the /a
 modifier) is 
\p{General_Category=Decimal_Number}, or synonymously, 
\p{General_Category=Digit}. Starting with Unicode version 4.1, this
 is the same set of 
characters matched by \p{Numeric_Type=Decimal}.
 But Unicode also has a different property 
with a similar name, \p{Numeric_Type=Digit}, which matches a completely different set of

characters. These characters are things such as CIRCLED DIGIT ONE
 or subscripts, or are from 
writing systems that lack all ten digits.

The design intent is for \d to exactly match the set of characters
 that can safely be used with "normal"
big-endian positional decimal
 syntax, where, for example 123 means one 'hundred', plus two 'tens',

plus three 'ones'. This positional notation does not necessarily apply
 to characters that match the 
other type of "digit", \p{Numeric_Type=Digit}, and so \d doesn't match them.

The Tamil digits (U+0BE6 - U+0BEF) can also legally be
 used in old-style Tamil numbers in which 
they would appear no more than
 one in a row, separated by characters that mean "times 10", "times 
100",
 etc. (See http://www.unicode.org/notes/tn21.)

Any character not matched by \d is matched by \D.

Word characters

A \w matches a single alphanumeric character (an alphabetic character, or a
 decimal digit); or a 
connecting punctuation character, such as an
 underscore ("_"); or a "mark" character (like some sort 
of accent) that
 attaches to one of those. It does not match a whole word. To match a
 whole word, use 
\w+. This isn't the same thing as matching an
 English word, but in the ASCII range it is the same as a
string of
 Perl-identifier characters.

If the /a modifier is in effect ...

\w matches the 63 characters [a-zA-Z0-9_].



Perl version 5.26.0 documentation - perlrecharclass

Page 3http://perldoc.perl.org

otherwise ...

For code points above 255 ...

\w matches the same as \p{Word} matches in this range. That is,
 it matches Thai 
letters, Greek letters, etc. This includes connector
 punctuation (like the underscore) 
which connect two words together, or
 diacritics, such as a COMBINING TILDE and the
modifier letters, which
 are generally used to add auxiliary markings to letters.

For code points below 256 ...

if locale rules are in effect ...

\w matches the platform's native underscore character plus whatever
 the 
locale considers to be alphanumeric.

if, instead, Unicode rules are in effect ...

\w matches exactly what \p{Word} matches.

otherwise ...

\w matches [a-zA-Z0-9_].

Which rules apply are determined as described in "Which character set modifier is in effect?" in perlre.

There are a number of security issues with the full Unicode list of word
 characters. See 
http://unicode.org/reports/tr36.

Also, for a somewhat finer-grained set of characters that are in programming
 language identifiers 
beyond the ASCII range, you may wish to instead use the
 more customized Unicode Properties, 
\p{ID_Start}, \p{ID_Continue}, \p{XID_Start}, and \p{XID_Continue}. See 
http://unicode.org/reports/tr31.

Any character not matched by \w is matched by \W.

Whitespace

\s matches any single character considered whitespace.

If the /a modifier is in effect ...

In all Perl versions, \s matches the 5 characters [\t\n\f\r ]; that
 is, the horizontal tab,
 the 
newline, the form feed, the carriage return, and the space.
 Starting in Perl v5.18, it also 
matches the vertical tab, \cK.
 See note [1] below for a discussion of this.

otherwise ...

For code points above 255 ...

\s matches exactly the code points above 255 shown with an "s" column
 in the table 
below.

For code points below 256 ...

if locale rules are in effect ...

\s matches whatever the locale considers to be whitespace.

if, instead, Unicode rules are in effect ...

\s matches exactly the characters shown with an "s" column in the
 table 
below.

otherwise ...

\s matches [\t\n\f\r ] and, starting in Perl
 v5.18, the vertical tab, \cK.
 (See note
[1] below for a discussion of this.)
 Note that this list doesn't include the 
non-breaking space.



Perl version 5.26.0 documentation - perlrecharclass

Page 4http://perldoc.perl.org

Which rules apply are determined as described in "Which character set modifier is in effect?" in perlre.

Any character not matched by \s is matched by \S.

\h matches any character considered horizontal whitespace;
 this includes the platform's space and 
tab characters and several others
 listed in the table below. \H matches any character
 not considered 
horizontal whitespace. They use the platform's native
 character set, and do not consider any locale 
that may otherwise be in
 use.

\v matches any character considered vertical whitespace;
 this includes the platform's carriage return 
and line feed characters (newline)
 plus several other characters, all listed in the table below. \V 
matches any character not considered vertical whitespace.
 They use the platform's native character 
set, and do not consider any
 locale that may otherwise be in use.

\R matches anything that can be considered a newline under Unicode
 rules. It can match a 
multi-character sequence. It cannot be used inside
 a bracketed character class; use \v instead 
(vertical whitespace).
 It uses the platform's
 native character set, and does not consider any locale that
may
 otherwise be in use.
 Details are discussed in perlrebackslash.

Note that unlike \s (and \d and \w), \h and \v always match
 the same characters, without regard to 
other factors, such as the active
 locale or whether the source string is in UTF-8 format.

One might think that \s is equivalent to [\h\v]. This is indeed true
 starting in Perl v5.18, but prior to 
that, the sole difference was that the
 vertical tab ("\cK") was not matched by \s.

The following table is a complete listing of characters matched by \s, \h and \v as of Unicode 6.3.

The first column gives the Unicode code point of the character (in hex format),
 the second column 
gives the (Unicode) name. The third column indicates
 by which class(es) the character is matched 
(assuming no locale is in
 effect that changes the \s matching).

 0x0009        CHARACTER TABULATION   h s
 0x000a              LINE FEED (LF)    vs
 0x000b             LINE TABULATION    vs  [1]
 0x000c              FORM FEED (FF)    vs
 0x000d        CARRIAGE RETURN (CR)    vs
 0x0020                       SPACE   h s
 0x0085             NEXT LINE (NEL)    vs  [2]
 0x00a0              NO-BREAK SPACE   h s  [2]
 0x1680            OGHAM SPACE MARK   h s
 0x2000                     EN QUAD   h s
 0x2001                     EM QUAD   h s
 0x2002                    EN SPACE   h s
 0x2003                    EM SPACE   h s
 0x2004          THREE-PER-EM SPACE   h s
 0x2005           FOUR-PER-EM SPACE   h s
 0x2006            SIX-PER-EM SPACE   h s
 0x2007                FIGURE SPACE   h s
 0x2008           PUNCTUATION SPACE   h s
 0x2009                  THIN SPACE   h s
 0x200a                  HAIR SPACE   h s
 0x2028              LINE SEPARATOR    vs
 0x2029         PARAGRAPH SEPARATOR    vs
 0x202f       NARROW NO-BREAK SPACE   h s
 0x205f   MEDIUM MATHEMATICAL SPACE   h s
 0x3000           IDEOGRAPHIC SPACE   h s

[1]



Perl version 5.26.0 documentation - perlrecharclass

Page 5http://perldoc.perl.org

Prior to Perl v5.18, \s did not match the vertical tab. [^\S\cK] (obscurely) matches what \s 
traditionally did.

[2]

NEXT LINE and NO-BREAK SPACE may or may not match \s depending
 on the rules in 
effect. See the beginning of this section.

Unicode Properties

\pP and \p{Prop} are character classes to match characters that fit given
 Unicode properties. One 
letter property names can be used in the \pP form,
 with the property name following the \p, 
otherwise, braces are required.
 When using braces, there is a single form, which is just the property 
name
 enclosed in the braces, and a compound form which looks like \p{name=value},
 which 
means to match if the property "name" for the character has that particular
 "value".
 For instance, a 
match for a number can be written as /\pN/ or as /\p{Number}/, or as /\p{Number=True}/.

Lowercase letters are matched by the property Lowercase_Letter which
 has the short form Ll. They 
need the braces, so are written as /\p{Ll}/ or /\p{Lowercase_Letter}/, or 
/\p{General_Category=Lowercase_Letter}/
 (the underscores are optional). /\pLl/ is valid, 
but means something different.
 It matches a two character string: a letter (Unicode property \pL),

followed by a lowercase l.

If locale rules are not in effect, the use of
 a Unicode property will force the regular expression into 
using Unicode
 rules, if it isn't already.

Note that almost all properties are immune to case-insensitive matching.
 That is, adding a /i regular 
expression modifier does not change what
 they match. There are two sets that are affected. The first 
set is Uppercase_Letter, Lowercase_Letter,
 and Titlecase_Letter,
 all of which match 
Cased_Letter under /i matching.
 The second set is Uppercase, Lowercase,
 and Titlecase,

all of which match Cased under /i matching.
 (The difference between these sets is that some things,
such as Roman
 numerals, come in both upper and lower case, so they are Cased, but
 aren't 
considered to be letters, so they aren't Cased_Letters. They're
 actually Letter_Numbers.)
 This 
set also includes its subsets PosixUpper and PosixLower, both
 of which under /i match 
PosixAlpha.

For more details on Unicode properties, see "Unicode Character Properties" in perlunicode; for a

complete list of possible properties, see "Properties accessible through \p{} and \P{}" in perluniprops,

which notes all forms that have /i differences.
 It is also possible to define your own properties. This 
is discussed in "User-Defined Character Properties" in perlunicode.

Unicode properties are defined (surprise!) only on Unicode code points.
 Starting in v5.20, when 
matching against \p and \P, Perl treats
 non-Unicode code points (those above the legal Unicode 
maximum of
 0x10FFFF) as if they were typical unassigned Unicode code points.

Prior to v5.20, Perl raised a warning and made all matches fail on
 non-Unicode code points. This 
could be somewhat surprising:

 chr(0x110000) =~ \p{ASCII_Hex_Digit=True}     # Fails on Perls < v5.20.
 chr(0x110000) =~ \p{ASCII_Hex_Digit=False}    # Also fails on Perls
                                               # < v5.20

Even though these two matches might be thought of as complements, until
 v5.20 they were so only 
on Unicode code points.

Examples

 "a"  =~  /\w/      # Match, "a" is a 'word' character.
 "7"  =~  /\w/      # Match, "7" is a 'word' character as well.
 "a"  =~  /\d/      # No match, "a" isn't a digit.
 "7"  =~  /\d/      # Match, "7" is a digit.
 " "  =~  /\s/      # Match, a space is whitespace.



Perl version 5.26.0 documentation - perlrecharclass

Page 6http://perldoc.perl.org

 "a"  =~  /\D/      # Match, "a" is a non-digit.
 "7"  =~  /\D/      # No match, "7" is not a non-digit.
 " "  =~  /\S/      # No match, a space is not non-whitespace.

 " "  =~  /\h/      # Match, space is horizontal whitespace.
 " "  =~  /\v/      # No match, space is not vertical whitespace.
 "\r" =~  /\v/      # Match, a return is vertical whitespace.

 "a"  =~  /\pL/     # Match, "a" is a letter.
 "a"  =~  /\p{Lu}/  # No match, /\p{Lu}/ matches upper case letters.

 "\x{0e0b}" =~ /\p{Thai}/  # Match, \x{0e0b} is the character
                           # 'THAI CHARACTER SO SO', and that's in
                           # Thai Unicode class.
 "a"  =~  /\P{Lao}/ # Match, as "a" is not a Laotian character.

It is worth emphasizing that \d, \w, etc, match single characters, not
 complete numbers or words. To 
match a number (that consists of digits),
 use \d+; to match a word, use \w+. But be aware of the 
security
 considerations in doing so, as mentioned above.

Bracketed Character Classes
The third form of character class you can use in Perl regular expressions
 is the bracketed character 
class. In its simplest form, it lists the characters
 that may be matched, surrounded by square brackets,
like this: [aeiou].
 This matches one of a, e, i, o or u. Like the other
 character classes, exactly one 
character is matched.* To match
 a longer string consisting of characters mentioned in the character

class, follow the character class with a quantifier. For
 instance, [aeiou]+ matches one or more 
lowercase English vowels.

Repeating a character in a character class has no
 effect; it's considered to be in the set only once.

Examples:

 "e"  =~  /[aeiou]/        # Match, as "e" is listed in the class.
 "p"  =~  /[aeiou]/        # No match, "p" is not listed in the class.
 "ae" =~  /^[aeiou]$/      # No match, a character class only matches
                           # a single character.
 "ae" =~  /^[aeiou]+$/     # Match, due to the quantifier.

 -------

* There are two exceptions to a bracketed character class matching a
 single character only. Each 
requires special handling by Perl to make
 things work:

When the class is to match caselessly under /i matching rules, and a
 character that is 
explicitly mentioned inside the class matches a
 multiple-character sequence caselessly under 
Unicode rules, the class
 will also match that sequence. For example, Unicode says that the

letter LATIN SMALL LETTER SHARP S should match the sequence ss
 under /i rules. 
Thus,

 'ss' =~ /\A\N{LATIN SMALL LETTER SHARP S}\z/i             # Matches
 'ss' =~ /\A[aeioust\N{LATIN SMALL LETTER SHARP S}]\z/i    # Matches

For this to happen, the class must not be inverted (see Negation)
 and the character must be 
explicitly specified, and not be part of a
 multi-character range (not even as one of its 
endpoints). (Character Ranges will be explained shortly.) Therefore,

 'ss' =~ /\A[\0-\x{ff}]\z/ui       # Doesn't match



Perl version 5.26.0 documentation - perlrecharclass

Page 7http://perldoc.perl.org

 'ss' =~ /\A[\0-\N{LATIN SMALL LETTER SHARP S}]\z/ui   # No match
 'ss' =~ /\A[\xDF-\xDF]\z/ui   # Matches on ASCII platforms, since
                               # \xDF is LATIN SMALL LETTER SHARP S,
                               # and the range is just a single
                               # element

Note that it isn't a good idea to specify these types of ranges anyway.

Some names known to \N{...} refer to a sequence of multiple characters,
 instead of the 
usual single character. When one of these is included in
 the class, the entire sequence is 
matched. For example,

  "\N{TAMIL LETTER KA}\N{TAMIL VOWEL SIGN AU}"
                              =~ / ^ [\N{TAMIL SYLLABLE KAU}]  $ /x;

matches, because \N{TAMIL SYLLABLE KAU} is a named sequence
 consisting of the two 
characters matched against. Like the other
 instance where a bracketed class can match 
multiple characters, and for
 similar reasons, the class must not be inverted, and the named 
sequence
 may not appear in a range, even one where it is both endpoints. If
 these happen, it 
is a fatal error if the character class is within the
 scope of use re 'strict, or within an 
extended (?[...]) class; otherwise
 only the first code point is used (with a regexp-type 
warning
 raised).

Special Characters Inside a Bracketed Character Class

Most characters that are meta characters in regular expressions (that
 is, characters that carry a 
special meaning like ., *, or () lose
 their special meaning and can be used inside a character class 
without
 the need to escape them. For instance, [()] matches either an opening
 parenthesis, or a 
closing parenthesis, and the parens inside the character
 class don't group or capture. Be aware that, 
unless the pattern is
 evaluated in single-quotish context, variable interpolation will take
 place before 
the bracketed class is parsed:

 $, = "\t| ";
 $a =~ m'[$,]';        # single-quotish: matches '$' or ','
 $a =~ q{[$,]}'        # same
 $a =~ m/[$,]/;        # double-quotish: matches "\t", "|", or " "

Characters that may carry a special meaning inside a character class are: \, ^, -, [ and ], and are 
discussed below. They can be
 escaped with a backslash, although this is sometimes not needed, in 
which
 case the backslash may be omitted.

The sequence \b is special inside a bracketed character class. While
 outside the character class, \b 
is an assertion indicating a point
 that does not have either two word characters or two non-word 
characters
 on either side, inside a bracketed character class, \b matches a
 backspace character.

The sequences \a, \c, \e, \f, \n, \N{NAME}, \N{U+hex char}, \r, \t,
 and \x
 are also special 
and have the same meanings as they do outside a
 bracketed character class.

Also, a backslash followed by two or three octal digits is considered an octal
 number.

A [ is not special inside a character class, unless it's the start of a
 POSIX character class (see POSIX
Character Classes below). It normally does
 not need escaping.

A ] is normally either the end of a POSIX character class (see POSIX Character Classes below), or it 
signals the end of the bracketed
 character class. If you want to include a ] in the set of characters, 
you
 must generally escape it.

However, if the ] is the first (or the second if the first
 character is a caret) character of a bracketed 
character class, it
 does not denote the end of the class (as you cannot have an empty class)
 and is 
considered part of the set of characters that can be matched without
 escaping.



Perl version 5.26.0 documentation - perlrecharclass

Page 8http://perldoc.perl.org

Examples:

 "+"   =~ /[+?*]/     #  Match, "+" in a character class is not special.
 "\cH" =~ /[\b]/      #  Match, \b inside in a character class
                      #  is equivalent to a backspace.
 "]"   =~ /[][]/      #  Match, as the character class contains
                      #  both [ and ].
 "[]"  =~ /[[]]/      #  Match, the pattern contains a character class
                      #  containing just [, and the character class is
                      #  followed by a ].

Bracketed Character Classes and the /xx pattern modifier

Normally SPACE and TAB characters have no special meaning inside a
 bracketed character class; 
they are just added to the list of characters
 matched by the class. But if the /xx
 pattern modifier is in 
effect, they are generally ignored and can be
 added to improve readability. They can't be added in the
middle of a
 single construct:

 / [ \x{10 FFFF} ] /xx  # WRONG!

The SPACE in the middle of the hex constant is illegal.

To specify a literal SPACE character, you can escape it with a
 backslash, like:

 /[ a e i o u \  ]/xx

This matches the English vowels plus the SPACE character.

For clarity, you should already have been using \t to specify a
 literal tab, and \t is unaffected by 
/xx.

Character Ranges

It is not uncommon to want to match a range of characters. Luckily, instead
 of listing all characters in 
the range, one may use the hyphen (-).
 If inside a bracketed character class you have two characters
separated
 by a hyphen, it's treated as if all characters between the two were in
 the class. For 
instance, [0-9] matches any ASCII digit, and [a-m]
 matches any lowercase letter from the first half 
of the ASCII alphabet.

Note that the two characters on either side of the hyphen are not
 necessarily both letters or both 
digits. Any character is possible,
 although not advisable. ['-?] contains a range of characters, but

most people will not know which characters that means. Furthermore,
 such ranges may lead to 
portability problems if the code has to run on
 a platform that uses a different character set, such as 
EBCDIC.

If a hyphen in a character class cannot syntactically be part of a range, for
 instance because it is the 
first or the last character of the character class,
 or if it immediately follows a range, the hyphen isn't 
special, and so is
 considered a character to be matched literally. If you want a hyphen in
 your set of 
characters to be matched and its position in the class is such
 that it could be considered part of a 
range, you must escape that hyphen
 with a backslash.

Examples:

 [a-z]       #  Matches a character that is a lower case ASCII letter.
 [a-fz]      #  Matches any letter between 'a' and 'f' (inclusive) or
             #  the letter 'z'.
 [-z]        #  Matches either a hyphen ('-') or the letter 'z'.
 [a-f-m]     #  Matches any letter between 'a' and 'f' (inclusive), the
             #  hyphen ('-'), or the letter 'm'.
 ['-?]       #  Matches any of the characters  '()*+,-./0123456789:;<=>?



Perl version 5.26.0 documentation - perlrecharclass

Page 9http://perldoc.perl.org

             #  (But not on an EBCDIC platform).
 [\N{APOSTROPHE}-\N{QUESTION MARK}]
             #  Matches any of the characters  '()*+,-./0123456789:;<=>?
             #  even on an EBCDIC platform.
 [\N{U+27}-\N{U+3F}] # Same. (U+27 is "'", and U+3F is "?")

As the final two examples above show, you can achieve portablity to
 non-ASCII platforms by using 
the \N{...} form for the range
 endpoints. These indicate that the specified range is to be interpreted
using Unicode values, so [\N{U+27}-\N{U+3F}] means to match \N{U+27}, \N{U+28}, 
\N{U+29}, ..., \N{U+3D}, \N{U+3E},
 and \N{U+3F}, whatever the native code point versions for 
those are.
 These are called "Unicode" ranges. If either end is of the \N{...}
 form, the range is 
considered Unicode. A regexp warning is raised
 under "use re 'strict'" if the other endpoint 
is specified
 non-portably:

 [\N{U+00}-\x09]    # Warning under re 'strict'; \x09 is non-portable
 [\N{U+00}-\t]      # No warning;

Both of the above match the characters \N{U+00} \N{U+01}, ... \N{U+08}, \N{U+09}, but the 
\x09 looks like it could be a
 mistake so the warning is raised (under re 'strict') for it.

Perl also guarantees that the ranges A-Z, a-z, 0-9, and any
 subranges of these match what an 
English-only speaker would expect them
 to match on any platform. That is, [A-Z] matches the 26 
ASCII
 uppercase letters; [a-z] matches the 26 lowercase letters; and [0-9] matches the 10
 digits. 
Subranges, like [h-k], match correspondingly, in this case
 just the four letters "h", "i", "j", and 
"k". This is the
 natural behavior on ASCII platforms where the code points (ordinal
 values) for "h" 
through "k" are consecutive integers (0x68 through
 0x6B). But special handling to achieve this may 
be needed on platforms
 with a non-ASCII native character set. For example, on EBCDIC
 platforms, 
the code point for "h" is 0x88, "i" is 0x89, "j" is
 0x91, and "k" is 0x92. Perl specially treats 
[h-k] to exclude the
 seven code points in the gap: 0x8A through 0x90. This special handling is
 only 
invoked when the range is a subrange of one of the ASCII uppercase,
 lowercase, and digit ranges, 
AND each end of the range is expressed
 either as a literal, like "A", or as a named character (
\N{...},
 including the \N{U+... form).

EBCDIC Examples:

 [i-j]               #  Matches either "i" or "j"
 [i-\N{LATIN SMALL LETTER J}]  # Same
 [i-\N{U+6A}]        #  Same
 [\N{U+69}-\N{U+6A}] #  Same
 [\x{89}-\x{91}]     #  Matches 0x89 ("i"), 0x8A .. 0x90, 0x91 ("j")
 [i-\x{91}]          #  Same
 [\x{89}-j]          #  Same
 [i-J]               #  Matches, 0x89 ("i") .. 0xC1 ("J"); special
                     #  handling doesn't apply because range is mixed
                     #  case

Negation

It is also possible to instead list the characters you do not want to
 match. You can do so by using a 
caret (^) as the first character in the
 character class. For instance, [^a-z] matches any character 
that is not a
 lowercase ASCII letter, which therefore includes more than a million
 Unicode code points.
The class is said to be "negated" or "inverted".

This syntax make the caret a special character inside a bracketed character
 class, but only if it is the 
first character of the class. So if you want
 the caret as one of the characters to match, either escape 
the caret or
 else don't list it first.

In inverted bracketed character classes, Perl ignores the Unicode rules
 that normally say that named 



Perl version 5.26.0 documentation - perlrecharclass

Page 10http://perldoc.perl.org

sequence, and certain characters should
 match a sequence of multiple characters use under 
caseless /i
 matching. Following those rules could lead to highly confusing
 situations:

 "ss" =~ /^[^\xDF]+$/ui;   # Matches!

This should match any sequences of characters that aren't \xDF nor
 what \xDF matches under /i. 
"s" isn't \xDF, but Unicode
 says that "ss" is what \xDF matches under /i. So which one
 "wins"? 
Do you fail the match because the string has ss or accept it
 because it has an s followed by another 
s? Perl has chosen the
 latter. (See note in Bracketed Character Classes above.)

Examples:

 "e"  =~  /[^aeiou]/   #  No match, the 'e' is listed.
 "x"  =~  /[^aeiou]/   #  Match, as 'x' isn't a lowercase vowel.
 "^"  =~  /[^^]/       #  No match, matches anything that isn't a caret.
 "^"  =~  /[x^]/       #  Match, caret is not special here.

Backslash Sequences

You can put any backslash sequence character class (with the exception of \N and \R) inside a 
bracketed character class, and it will act just
 as if you had put all characters matched by the 
backslash sequence inside the
 character class. For instance, [a-f\d] matches any decimal digit, or 
any
 of the lowercase letters between 'a' and 'f' inclusive.

\N within a bracketed character class must be of the forms \N{name}
 or \N{U+hex char}, and 
NOT be the form that matches non-newlines,
 for the same reason that a dot . inside a bracketed 
character class loses
 its special meaning: it matches nearly anything, which generally isn't what you

want to happen.

Examples:

 /[\p{Thai}\d]/     # Matches a character that is either a Thai
                    # character, or a digit.
 /[^\p{Arabic}()]/  # Matches a character that is neither an Arabic
                    # character, nor a parenthesis.

Backslash sequence character classes cannot form one of the endpoints
 of a range. Thus, you can't 
say:

 /[\p{Thai}-\d]/     # Wrong!

POSIX Character Classes

POSIX character classes have the form [:class:], where class is the
 name, and the [: and :] 
delimiters. POSIX character classes only appear inside bracketed character classes, and are a 
convenient and descriptive
 way of listing a group of characters.

Be careful about the syntax,

 # Correct:
 $string =~ /[[:alpha:]]/

 # Incorrect (will warn):
 $string =~ /[:alpha:]/

The latter pattern would be a character class consisting of a colon,
 and the letters a, l, p and h.

POSIX character classes can be part of a larger bracketed character class.
 For example,



Perl version 5.26.0 documentation - perlrecharclass

Page 11http://perldoc.perl.org

 [01[:alpha:]%]

is valid and matches '0', '1', any alphabetic character, and the percent sign.

Perl recognizes the following POSIX character classes:

 alpha  Any alphabetical character ("[A-Za-z]").
 alnum  Any alphanumeric character ("[A-Za-z0-9]").
 ascii  Any character in the ASCII character set.
 blank  A GNU extension, equal to a space or a horizontal tab ("\t").
 cntrl  Any control character.  See Note [2] below.
 digit  Any decimal digit ("[0-9]"), equivalent to "\d".
 graph  Any printable character, excluding a space.  See Note [3] below.
 lower  Any lowercase character ("[a-z]").
 print  Any printable character, including a space.  See Note [4] below.
 punct  Any graphical character excluding "word" characters.  Note [5].
 space  Any whitespace character. "\s" including the vertical tab
        ("\cK").
 upper  Any uppercase character ("[A-Z]").
 word   A Perl extension ("[A-Za-z0-9_]"), equivalent to "\w".
 xdigit Any hexadecimal digit ("[0-9a-fA-F]").

Like the Unicode properties, most of the POSIX
 properties match the same regardless of whether 
case-insensitive (/i)
 matching is in effect or not. The two exceptions are [:upper:] and 
[:lower:]. Under /i, they each match the union of [:upper:] and [:lower:].

Most POSIX character classes have two Unicode-style \p property
 counterparts. (They are not official
Unicode properties, but Perl extensions
 derived from official Unicode properties.) The table below 
shows the relation
 between POSIX character classes and these counterparts.

One counterpart, in the column labelled "ASCII-range Unicode" in
 the table, matches only characters 
in the ASCII character set.

The other counterpart, in the column labelled "Full-range Unicode", matches any
 appropriate 
characters in the full Unicode character set. For example, \p{Alpha} matches not just the ASCII 
alphabetic characters, but any
 character in the entire Unicode character set considered alphabetic.
 An
entry in the column labelled "backslash sequence" is a (short)
 equivalent.

 [[:...:]]      ASCII-range          Full-range  backslash  Note
                 Unicode              Unicode     sequence
 -----------------------------------------------------
   alpha      \p{PosixAlpha}       \p{XPosixAlpha}
   alnum      \p{PosixAlnum}       \p{XPosixAlnum}
   ascii      \p{ASCII}
   blank      \p{PosixBlank}       \p{XPosixBlank}  \h      [1]
                                   or \p{HorizSpace}        [1]
   cntrl      \p{PosixCntrl}       \p{XPosixCntrl}          [2]
   digit      \p{PosixDigit}       \p{XPosixDigit}  \d
   graph      \p{PosixGraph}       \p{XPosixGraph}          [3]
   lower      \p{PosixLower}       \p{XPosixLower}
   print      \p{PosixPrint}       \p{XPosixPrint}          [4]
   punct      \p{PosixPunct}       \p{XPosixPunct}          [5]
              \p{PerlSpace}        \p{XPerlSpace}   \s      [6]
   space      \p{PosixSpace}       \p{XPosixSpace}          [6]
   upper      \p{PosixUpper}       \p{XPosixUpper}
   word       \p{PosixWord}        \p{XPosixWord}   \w
   xdigit     \p{PosixXDigit}      \p{XPosixXDigit}



Perl version 5.26.0 documentation - perlrecharclass

Page 12http://perldoc.perl.org

[1]

\p{Blank} and \p{HorizSpace} are synonyms.

[2]

Control characters don't produce output as such, but instead usually control
 the terminal 
somehow: for example, newline and backspace are control characters.
 On ASCII platforms, in 
the ASCII range, characters whose code points are
 between 0 and 31 inclusive, plus 127 (DEL
) are control characters; on
 EBCDIC platforms, their counterparts are control characters.

[3]

Any character that is graphical, that is, visible. This class consists
 of all alphanumeric 
characters and all punctuation characters.

[4]

All printable characters, which is the set of all graphical characters
 plus those whitespace 
characters which are not also controls.

[5]

\p{PosixPunct} and [[:punct:]] in the ASCII range match all
 non-controls, 
non-alphanumeric, non-space characters: [-!"#$%&'()*+,./:;<=>?@[\\\]^_`{|}~] 
(although if a locale is in effect,
 it could alter the behavior of [[:punct:]]).

The similarly named property, \p{Punct}, matches a somewhat different
 set in the ASCII 
range, namely [-!"#%&'()*,./:;?@[\\\]_{}]. That is, it is missing the nine
 characters 
[$+<=>^`|~].
 This is because Unicode splits what POSIX considers to be punctuation into 
two
 categories, Punctuation and Symbols.

\p{XPosixPunct} and (under Unicode rules) [[:punct:]], match what 
\p{PosixPunct} matches in the ASCII range, plus what \p{Punct}
 matches. This is 
different than strictly matching according to \p{Punct}. Another way to say it is that
 if 
Unicode rules are in effect, [[:punct:]] matches all characters
 that Unicode considers 
punctuation, plus all ASCII-range characters that
 Unicode considers symbols.

[6]

\p{XPerlSpace} and \p{Space} match identically starting with Perl
 v5.18. In earlier 
versions, these differ only in that in non-locale
 matching, \p{XPerlSpace} did not match the
vertical tab, \cK.
 Same for the two ASCII-only range forms.

There are various other synonyms that can be used besides the names
 listed in the table. For 
example, \p{XPosixAlpha} can be written as \p{Alpha}. All are listed in "Properties accessible 
through \p{} and \P{}" in perluniprops.

Both the \p counterparts always assume Unicode rules are in effect.
 On ASCII platforms, this means 
they assume that the code points from 128
 to 255 are Latin-1, and that means that using them under 
locale rules is
 unwise unless the locale is guaranteed to be Latin-1 or UTF-8. In contrast, the
 POSIX 
character classes are useful under locale rules. They are
 affected by the actual rules in effect, as 
follows:

If the /a modifier, is in effect ...

Each of the POSIX classes matches exactly the same as their ASCII-range
 counterparts.

otherwise ...

For code points above 255 ...

The POSIX class matches the same as its Full-range counterpart.

For code points below 256 ...

if locale rules are in effect ...



Perl version 5.26.0 documentation - perlrecharclass

Page 13http://perldoc.perl.org

The POSIX class matches according to the locale, except:

word

also includes the platform's native underscore character, no matter 
what
 the locale is.

ascii

on platforms that don't have the POSIX ascii extension, this matches

just the platform's native ASCII-range characters.

blank

on platforms that don't have the POSIX blank extension, this matches

just the platform's native tab and space characters.

if, instead, Unicode rules are in effect ...

The POSIX class matches the same as the Full-range counterpart.

otherwise ...

The POSIX class matches the same as the ASCII range counterpart.

Which rules apply are determined as described in "Which character set modifier is in effect?" in perlre.

It is proposed to change this behavior in a future release of Perl so that
 whether or not Unicode rules 
are in effect would not change the
 behavior: Outside of locale, the POSIX classes
 would behave like 
their ASCII-range counterparts. If you wish to
 comment on this proposal, send email to 
perl5-porters@perl.org.

Negation of POSIX character classes

A Perl extension to the POSIX character class is the ability to
 negate it. This is done by prefixing the 
class name with a caret (^).
 Some examples:

     POSIX         ASCII-range     Full-range  backslash
                    Unicode         Unicode    sequence
 -----------------------------------------------------
 [[:^digit:]]   \P{PosixDigit}  \P{XPosixDigit}   \D
 [[:^space:]]   \P{PosixSpace}  \P{XPosixSpace}
                \P{PerlSpace}   \P{XPerlSpace}    \S
 [[:^word:]]    \P{PerlWord}    \P{XPosixWord}    \W

The backslash sequence can mean either ASCII- or Full-range Unicode,
 depending on various factors
as described in "Which character set modifier is in effect?" in perlre.

[= =] and [. .]

Perl recognizes the POSIX character classes [=class=] and [.class.], but does not (yet?) 
support them. Any attempt to use
 either construct raises an exception.

Examples

 /[[:digit:]]/            # Matches a character that is a digit.
 /[01[:lower:]]/          # Matches a character that is either a
                          # lowercase letter, or '0' or '1'.
 /[[:digit:][:^xdigit:]]/ # Matches a character that can be anything
                          # except the letters 'a' to 'f' and 'A' to
                          # 'F'.  This is because the main character
                          # class is composed of two POSIX character
                          # classes that are ORed together, one that
                          # matches any digit, and the other that



Perl version 5.26.0 documentation - perlrecharclass

Page 14http://perldoc.perl.org

                          # matches anything that isn't a hex digit.
                          # The OR adds the digits, leaving only the
                          # letters 'a' to 'f' and 'A' to 'F' excluded.

Extended Bracketed Character Classes

This is a fancy bracketed character class that can be used for more
 readable and less error-prone 
classes, and to perform set operations,
 such as intersection. An example is

 /(?[ \p{Thai} & \p{Digit} ])/

This will match all the digit characters that are in the Thai script.

This is an experimental feature available starting in 5.18, and is
 subject to change as we gain field 
experience with it. Any attempt to
 use it will raise a warning, unless disabled via

 no warnings "experimental::regex_sets";

Comments on this feature are welcome; send email to perl5-porters@perl.org.

The rules used by use re 'strict apply to this
 construct.

We can extend the example above:

 /(?[ ( \p{Thai} + \p{Lao} ) & \p{Digit} ])/

This matches digits that are in either the Thai or Laotian scripts.

Notice the white space in these examples. This construct always has
 the /xx modifier turned on 
within it.

The available binary operators are:

 &    intersection
 +    union
 |    another name for '+', hence means union
 -    subtraction (the result matches the set consisting of those
      code points matched by the first operand, excluding any that
      are also matched by the second operand)
 ^    symmetric difference (the union minus the intersection).  This
      is like an exclusive or, in that the result is the set of code
      points that are matched by either, but not both, of the
      operands.

There is one unary operator:

 !    complement

All the binary operators left associate; "&" is higher precedence
 than the others, which all have equal 
precedence. The unary operator
 right associates, and has highest precedence. Thus this follows the

normal Perl precedence rules for logical operators. Use parentheses to
 override the default 
precedence and associativity.

The main restriction is that everything is a metacharacter. Thus,
 you cannot refer to single characters 
by doing something like this:

 /(?[ a + b ])/ # Syntax error!



Perl version 5.26.0 documentation - perlrecharclass

Page 15http://perldoc.perl.org

The easiest way to specify an individual typable character is to enclose
 it in brackets:

 /(?[ [a] + [b] ])/

(This is the same thing as [ab].) You could also have said the
 equivalent:

 /(?[[ a b ]])/

(You can, of course, specify single characters by using, \x{...}, \N{...}, etc.)

This last example shows the use of this construct to specify an ordinary
 bracketed character class 
without additional set operations. Note the
 white space within it. This is allowed because /xx is

automatically turned on within this construct.

All the other escapes accepted by normal bracketed character classes are
 accepted here as well.

Because this construct compiles under use re 'strict, unrecognized escapes that
 generate 
warnings in normal classes are fatal errors here, as well as
 all other warnings from these class 
elements, as well as some
 practices that don't currently warn outside re 'strict'. For example

you cannot say

 /(?[ [ \xF ] ])/     # Syntax error!

You have to have two hex digits after a braceless \x (use a leading
 zero to make two). These 
restrictions are to lower the incidence of
 typos causing the class to not match what you thought it 
would.

If a regular bracketed character class contains a \p{} or \P{} and
 is matched against a 
non-Unicode code point, a warning may be
 raised, as the result is not Unicode-defined. No such 
warning will come
 when using this extended form.

The final difference between regular bracketed character classes and
 these, is that it is not possible to
get these to match a
 multi-character fold. Thus,

 /(?[ [\xDF] ])/iu

does not match the string ss.

You don't have to enclose POSIX class names inside double brackets,
 hence both of the following 
work:

 /(?[ [:word:] - [:lower:] ])/
 /(?[ [[:word:]] - [[:lower:]] ])/

Any contained POSIX character classes, including things like \w and \D
 respect the /a (and /aa) 
modifiers.

(?[ ]) is a regex-compile-time construct. Any attempt to use
 something which isn't knowable at the 
time the containing regular
 expression is compiled is a fatal error. In practice, this means
 just three 
limitations:

1 When compiled within the scope of use locale (or the /l regex
 modifier), this construct 
assumes that the execution-time locale will be
 a UTF-8 one, and the generated pattern always
uses Unicode rules. What
 gets matched or not thus isn't dependent on the actual runtime 
locale, so
 tainting is not enabled. But a locale category warning is raised
 if the runtime 
locale turns out to not be UTF-8.

2 Any user-defined property
 used must be already defined by the time the regular expression is

compiled (but note that this construct can be used instead of such
 properties).



Perl version 5.26.0 documentation - perlrecharclass

Page 16http://perldoc.perl.org

3 A regular expression that otherwise would compile
 using /d rules, and which uses this 
construct will instead
 use /u. Thus this construct tells Perl that you don't want /d rules for the 
entire regular expression containing it.

Note that skipping white space applies only to the interior of this
 construct. There must not be any 
space between any of the characters
 that form the initial (?[. Nor may there be space between the

closing ]) characters.

Just as in all regular expressions, the pattern can be built up by
 including variables that are 
interpolated at regex compilation time.
 Care must be taken to ensure that you are getting what you 
expect. For
 example:

 my $thai_or_lao = '\p{Thai} + \p{Lao}';
 ...
 qr/(?[ \p{Digit} & $thai_or_lao ])/;

compiles to

 qr/(?[ \p{Digit} & \p{Thai} + \p{Lao} ])/;

But this does not have the effect that someone reading the code would
 likely expect, as the 
intersection applies just to \p{Thai},
 excluding the Laotian. Pitfalls like this can be avoided by

parenthesizing the component pieces:

 my $thai_or_lao = '( \p{Thai} + \p{Lao} )';

But any modifiers will still apply to all the components:

 my $lower = '\p{Lower} + \p{Digit}';
 qr/(?[ \p{Greek} & $lower ])/i;

matches upper case things. You can avoid surprises by making the
 components into instances of this 
construct by compiling them:

 my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
 my $lower = qr/(?[ \p{Lower} + \p{Digit} ])/;

When these are embedded in another pattern, what they match does not
 change, regardless of 
parenthesization or what modifiers are in effect
 in that outer pattern.

Due to the way that Perl parses things, your parentheses and brackets
 may need to be balanced, 
even including comments. If you run into any
 examples, please send them to perlbug@perl.org, 
so that we can have a
 concrete example for this man page.

We may change it so that things that remain legal uses in normal bracketed
 character classes might 
become illegal within this experimental
 construct. One proposal, for example, is to forbid adjacent 
uses of the
 same character, as in (?[ [aa] ]). The motivation for such a change
 is that this usage 
is likely a typo, as the second "a" adds nothing.


