
Perl version 5.26.1 documentation - strict

Page 1http://perldoc.perl.org

NAME
strict - Perl pragma to restrict unsafe constructs

SYNOPSIS
    use strict;

    use strict "vars";
    use strict "refs";
    use strict "subs";

    use strict;
    no strict "vars";

DESCRIPTION
The strict pragma disables certain Perl expressions that could behave
 unexpectedly or are difficult 
to debug, turning them into errors. The
 effect of this pragma is limited to the current file or scope 
block.

If no import list is supplied, all possible restrictions are assumed.
 (This is the safest mode to operate 
in, but is sometimes too strict for
 casual programming.) Currently, there are three possible things to 
be
 strict about: "subs", "vars", and "refs".

strict refs

This generates a runtime error if you use symbolic references (see perlref).

    use strict 'refs';
    $ref = \$foo;
    print $$ref;	 # ok
    $ref = "foo";
    print $$ref;	 # runtime error; normally ok
    $file = "STDOUT";
    print $file "Hi!";	 # error; note: no comma after $file

There is one exception to this rule:

    $bar = \&{'foo'};
    &$bar;

is allowed so that goto &$AUTOLOAD would not break under stricture.

strict vars

This generates a compile-time error if you access a variable that was
 neither explicitly 
declared (using any of my, our, state, or use
 vars) nor fully qualified. (Because this is 
to avoid variable suicide
 problems and subtle dynamic scoping issues, a merely local 
variable isn't
 good enough.) See "my" in perlfunc, "our" in perlfunc, "state" in perlfunc, 
"local" in perlfunc, and vars.

    use strict 'vars';
    $X::foo = 1;	 # ok, fully qualified
    my $foo = 10;	 # ok, my() var
    local $baz = 9;	 # blows up, $baz not declared before

    package Cinna;
    our $bar;			 # Declares $bar in current package
    $bar = 'HgS';		 # ok, global declared via pragma

The local() generated a compile-time error because you just touched a global
 name 



Perl version 5.26.1 documentation - strict

Page 2http://perldoc.perl.org

without fully qualifying it.

Because of their special use by sort(), the variables $a and $b are
 exempted from this 
check.

strict subs

This disables the poetry optimization, generating a compile-time error if
 you try to use a 
bareword identifier that's not a subroutine, unless it
 is a simple identifier (no colons) and 
that it appears in curly braces or
 on the left hand side of the => symbol.

    use strict 'subs';
    $SIG{PIPE} = Plumber;   # blows up
    $SIG{PIPE} = "Plumber"; # fine: quoted string is always ok
    $SIG{PIPE} = \&Plumber; # preferred form

See "Pragmatic Modules" in perlmodlib.

HISTORY
strict 'subs', with Perl 5.6.1, erroneously permitted to use an unquoted
 compound identifier (e.g.
Foo::Bar) as a hash key (before => or
 inside curlies), but without forcing it always to a literal string.

Starting with Perl 5.8.1 strict is strict about its restrictions:
 if unknown restrictions are used, the strict 
pragma will abort with

    Unknown 'strict' tag(s) '...'

As of version 1.04 (Perl 5.10), strict verifies that it is used as
 "strict" to avoid the dreaded Strict trap on
case insensitive file
 systems.


