=head1 NAME perluniintro - Perl Unicode introduction =head1 DESCRIPTION This document gives a general idea of Unicode and how to use Unicode in Perl. =head2 Unicode Unicode is a character set standard which plans to codify all of the writing systems of the world, plus many other symbols. Unicode and ISO/IEC 10646 are coordinated standards that provide code points for characters in almost all modern character set standards, covering more than 30 writing systems and hundreds of languages, including all commercially-important modern languages. All characters in the largest Chinese, Japanese, and Korean dictionaries are also encoded. The standards will eventually cover almost all characters in more than 250 writing systems and thousands of languages. Unicode 1.0 was released in October 1991, and 4.0 in April 2003. A Unicode I is an abstract entity. It is not bound to any particular integer width, especially not to the C language C. Unicode is language-neutral and display-neutral: it does not encode the language of the text and it does not define fonts or other graphical layout details. Unicode operates on characters and on text built from those characters. Unicode defines characters like C or C and unique numbers for the characters, in this case 0x0041 and 0x03B1, respectively. These unique numbers are called I. The Unicode standard prefers using hexadecimal notation for the code points. If numbers like C<0x0041> are unfamiliar to you, take a peek at a later section, L. The Unicode standard uses the notation C, to give the hexadecimal code point and the normative name of the character. Unicode also defines various I for the characters, like "uppercase" or "lowercase", "decimal digit", or "punctuation"; these properties are independent of the names of the characters. Furthermore, various operations on the characters like uppercasing, lowercasing, and collating (sorting) are defined. A Unicode character consists either of a single code point, or a I (like C), followed by one or more I (like C). This sequence of base character and modifiers is called a I. Whether to call these combining character sequences "characters" depends on your point of view. If you are a programmer, you probably would tend towards seeing each element in the sequences as one unit, or "character". The whole sequence could be seen as one "character", however, from the user's point of view, since that's probably what it looks like in the context of the user's language. With this "whole sequence" view of characters, the total number of characters is open-ended. But in the programmer's "one unit is one character" point of view, the concept of "characters" is more deterministic. In this document, we take that second point of view: one "character" is one Unicode code point, be it a base character or a combining character. For some combinations, there are I characters. C, for example, is defined as a single code point. These precomposed characters are, however, only available for some combinations, and are mainly meant to support round-trip conversions between Unicode and legacy standards (like the ISO 8859). In the general case, the composing method is more extensible. To support conversion between different compositions of the characters, various I to standardize representations are also defined. Because of backward compatibility with legacy encodings, the "a unique number for every character" idea breaks down a bit: instead, there is "at least one number for every character". The same character could be represented differently in several legacy encodings. The converse is also not true: some code points do not have an assigned character. Firstly, there are unallocated code points within otherwise used blocks. Secondly, there are special Unicode control characters that do not represent true characters. A common myth about Unicode is that it would be "16-bit", that is, Unicode is only represented as C<0x10000> (or 65536) characters from C<0x0000> to C<0xFFFF>. B Since Unicode 2.0 (July 1996), Unicode has been defined all the way up to 21 bits (C<0x10FFFF>), and since Unicode 3.1 (March 2001), characters have been defined beyond C<0xFFFF>. The first C<0x10000> characters are called the I, or the I (BMP). With Unicode 3.1, 17 (yes, seventeen) planes in all were defined--but they are nowhere near full of defined characters, yet. Another myth is that the 256-character blocks have something to do with languages--that each block would define the characters used by a language or a set of languages. B The division into blocks exists, but it is almost completely accidental--an artifact of how the characters have been and still are allocated. Instead, there is a concept called I, which is more useful: there is C script, C script, and so on. Scripts usually span varied parts of several blocks. For further information see L. The Unicode code points are just abstract numbers. To input and output these abstract numbers, the numbers must be I or I somehow. Unicode defines several I, of which I is perhaps the most popular. UTF-8 is a variable length encoding that encodes Unicode characters as 1 to 6 bytes (only 4 with the currently defined characters). Other encodings include UTF-16 and UTF-32 and their big- and little-endian variants (UTF-8 is byte-order independent) The ISO/IEC 10646 defines the UCS-2 and UCS-4 encoding forms. For more information about encodings--for instance, to learn what I and I (BOMs) are--see L. =head2 Perl's Unicode Support Starting from Perl 5.6.0, Perl has had the capacity to handle Unicode natively. Perl 5.8.0, however, is the first recommended release for serious Unicode work. The maintenance release 5.6.1 fixed many of the problems of the initial Unicode implementation, but for example regular expressions still do not work with Unicode in 5.6.1. B is no longer necessary.> In earlier releases the C pragma was used to declare that operations in the current block or file would be Unicode-aware. This model was found to be wrong, or at least clumsy: the "Unicodeness" is now carried with the data, instead of being attached to the operations. Only one case remains where an explicit C is needed: if your Perl script itself is encoded in UTF-8, you can use UTF-8 in your identifier names, and in string and regular expression literals, by saying C. This is not the default because scripts with legacy 8-bit data in them would break. See L. =head2 Perl's Unicode Model Perl supports both pre-5.6 strings of eight-bit native bytes, and strings of Unicode characters. The principle is that Perl tries to keep its data as eight-bit bytes for as long as possible, but as soon as Unicodeness cannot be avoided, the data is transparently upgraded to Unicode. Internally, Perl currently uses either whatever the native eight-bit character set of the platform (for example Latin-1) is, defaulting to UTF-8, to encode Unicode strings. Specifically, if all code points in the string are C<0xFF> or less, Perl uses the native eight-bit character set. Otherwise, it uses UTF-8. A user of Perl does not normally need to know nor care how Perl happens to encode its internal strings, but it becomes relevant when outputting Unicode strings to a stream without a PerlIO layer -- one with the "default" encoding. In such a case, the raw bytes used internally (the native character set or UTF-8, as appropriate for each string) will be used, and a "Wide character" warning will be issued if those strings contain a character beyond 0x00FF. For example, perl -e 'print "\x{DF}\n", "\x{0100}\x{DF}\n"' produces a fairly useless mixture of native bytes and UTF-8, as well as a warning: Wide character in print at ... To output UTF-8, use the C<:utf8> output layer. Prepending binmode(STDOUT, ":utf8"); to this sample program ensures that the output is completely UTF-8, and removes the program's warning. You can enable automatic UTF-8-ification of your standard file handles, default C layer, and C<@ARGV> by using either the C<-C> command line switch or the C environment variable, see L for the documentation of the C<-C> switch. Note that this means that Perl expects other software to work, too: if Perl has been led to believe that STDIN should be UTF-8, but then STDIN coming in from another command is not UTF-8, Perl will complain about the malformed UTF-8. All features that combine Unicode and I/O also require using the new PerlIO feature. Almost all Perl 5.8 platforms do use PerlIO, though: you can see whether yours is by running "perl -V" and looking for C. =head2 Unicode and EBCDIC Perl 5.8.0 also supports Unicode on EBCDIC platforms. There, Unicode support is somewhat more complex to implement since additional conversions are needed at every step. Some problems remain, see L for details. In any case, the Unicode support on EBCDIC platforms is better than in the 5.6 series, which didn't work much at all for EBCDIC platform. On EBCDIC platforms, the internal Unicode encoding form is UTF-EBCDIC instead of UTF-8. The difference is that as UTF-8 is "ASCII-safe" in that ASCII characters encode to UTF-8 as-is, while UTF-EBCDIC is "EBCDIC-safe". =head2 Creating Unicode To create Unicode characters in literals for code points above C<0xFF>, use the C<\x{...}> notation in double-quoted strings: my $smiley = "\x{263a}"; Similarly, it can be used in regular expression literals $smiley =~ /\x{263a}/; At run-time you can use C: my $hebrew_alef = chr(0x05d0); See L for how to find all these numeric codes. Naturally, C will do the reverse: it turns a character into a code point. Note that C<\x..> (no C<{}> and only two hexadecimal digits), C<\x{...}>, and C for arguments less than C<0x100> (decimal 256) generate an eight-bit character for backward compatibility with older Perls. For arguments of C<0x100> or more, Unicode characters are always produced. If you want to force the production of Unicode characters regardless of the numeric value, use C instead of C<\x..>, C<\x{...}>, or C. You can also use the C pragma to invoke characters by name in double-quoted strings: use charnames ':full'; my $arabic_alef = "\N{ARABIC LETTER ALEF}"; And, as mentioned above, you can also C numbers into Unicode characters: my $georgian_an = pack("U", 0x10a0); Note that both C<\x{...}> and C<\N{...}> are compile-time string constants: you cannot use variables in them. if you want similar run-time functionality, use C and C. Also note that if all the code points for pack "U" are below 0x100, bytes will be generated, just like if you were using C. my $bytes = pack("U*", 0x80, 0xFF); If you want to force the result to Unicode characters, use the special C<"U0"> prefix. It consumes no arguments but forces the result to be in Unicode characters, instead of bytes. my $chars = pack("U0U*", 0x80, 0xFF); =head2 Handling Unicode Handling Unicode is for the most part transparent: just use the strings as usual. Functions like C, C, and C will work on the Unicode characters; regular expressions will work on the Unicode characters (see L and L). Note that Perl considers combining character sequences to be characters, so for example use charnames ':full'; print length("\N{LATIN CAPITAL LETTER A}\N{COMBINING ACUTE ACCENT}"), "\n"; will print 2, not 1. The only exception is that regular expressions have C<\X> for matching a combining character sequence. Life is not quite so transparent, however, when working with legacy encodings, I/O, and certain special cases: =head2 Legacy Encodings When you combine legacy data and Unicode the legacy data needs to be upgraded to Unicode. Normally ISO 8859-1 (or EBCDIC, if applicable) is assumed. You can override this assumption by using the C pragma, for example use encoding 'latin2'; # ISO 8859-2 in which case literals (string or regular expressions), C, and C in your whole script are assumed to produce Unicode characters from ISO 8859-2 code points. Note that the matching for encoding names is forgiving: instead of C you could have said C, or C, or other variations. With just use encoding; the environment variable C will be consulted. If that variable isn't set, the encoding pragma will fail. The C module knows about many encodings and has interfaces for doing conversions between those encodings: use Encode 'from_to'; from_to($data, "iso-8859-3", "utf-8"); # from legacy to utf-8 =head2 Unicode I/O Normally, writing out Unicode data print FH $some_string_with_unicode, "\n"; produces raw bytes that Perl happens to use to internally encode the Unicode string. Perl's internal encoding depends on the system as well as what characters happen to be in the string at the time. If any of the characters are at code points C<0x100> or above, you will get a warning. To ensure that the output is explicitly rendered in the encoding you desire--and to avoid the warning--open the stream with the desired encoding. Some examples: open FH, ">:utf8", "file"; open FH, ">:encoding(ucs2)", "file"; open FH, ">:encoding(UTF-8)", "file"; open FH, ">:encoding(shift_jis)", "file"; and on already open streams, use C: binmode(STDOUT, ":utf8"); binmode(STDOUT, ":encoding(ucs2)"); binmode(STDOUT, ":encoding(UTF-8)"); binmode(STDOUT, ":encoding(shift_jis)"); The matching of encoding names is loose: case does not matter, and many encodings have several aliases. Note that the C<:utf8> layer must always be specified exactly like that; it is I subject to the loose matching of encoding names. See L for the C<:utf8> layer, L and L for the C<:encoding()> layer, and L for many encodings supported by the C module. Reading in a file that you know happens to be encoded in one of the Unicode or legacy encodings does not magically turn the data into Unicode in Perl's eyes. To do that, specify the appropriate layer when opening files open(my $fh,'<:utf8', 'anything'); my $line_of_unicode = <$fh>; open(my $fh,'<:encoding(Big5)', 'anything'); my $line_of_unicode = <$fh>; The I/O layers can also be specified more flexibly with the C pragma. See L, or look at the following example. use open ':utf8'; # input and output default layer will be UTF-8 open X, ">file"; print X chr(0x100), "\n"; close X; open Y, "); # this should print 0x100 close Y; With the C pragma you can use the C<:locale> layer BEGIN { $ENV{LC_ALL} = $ENV{LANG} = 'ru_RU.KOI8-R' } # the :locale will probe the locale environment variables like LC_ALL use open OUT => ':locale'; # russki parusski open(O, ">koi8"); print O chr(0x430); # Unicode CYRILLIC SMALL LETTER A = KOI8-R 0xc1 close O; open(I, "), "\n"; # this should print 0xc1 close I; or you can also use the C<':encoding(...)'> layer open(my $epic,'<:encoding(iso-8859-7)','iliad.greek'); my $line_of_unicode = <$epic>; These methods install a transparent filter on the I/O stream that converts data from the specified encoding when it is read in from the stream. The result is always Unicode. The L pragma affects all the C calls after the pragma by setting default layers. If you want to affect only certain streams, use explicit layers directly in the C call. You can switch encodings on an already opened stream by using C; see L. The C<:locale> does not currently (as of Perl 5.8.0) work with C and C, only with the C pragma. The C<:utf8> and C<:encoding(...)> methods do work with all of C, C, and the C pragma. Similarly, you may use these I/O layers on output streams to automatically convert Unicode to the specified encoding when it is written to the stream. For example, the following snippet copies the contents of the file "text.jis" (encoded as ISO-2022-JP, aka JIS) to the file "text.utf8", encoded as UTF-8: open(my $nihongo, '<:encoding(iso-2022-jp)', 'text.jis'); open(my $unicode, '>:utf8', 'text.utf8'); while (<$nihongo>) { print $unicode $_ } The naming of encodings, both by the C and by the C pragma, is similar to the C pragma in that it allows for flexible names: C and C will both be understood. Common encodings recognized by ISO, MIME, IANA, and various other standardisation organisations are recognised; for a more detailed list see L. C reads characters and returns the number of characters. C and C operate on byte counts, as do C and C. Notice that because of the default behaviour of not doing any conversion upon input if there is no default layer, it is easy to mistakenly write code that keeps on expanding a file by repeatedly encoding the data: # BAD CODE WARNING open F, "file"; local $/; ## read in the whole file of 8-bit characters $t = ; close F; open F, ">:utf8", "file"; print F $t; ## convert to UTF-8 on output close F; If you run this code twice, the contents of the F will be twice UTF-8 encoded. A C would have avoided the bug, or explicitly opening also the F for input as UTF-8. B: the C<:utf8> and C<:encoding> features work only if your Perl has been built with the new PerlIO feature (which is the default on most systems). =head2 Displaying Unicode As Text Sometimes you might want to display Perl scalars containing Unicode as simple ASCII (or EBCDIC) text. The following subroutine converts its argument so that Unicode characters with code points greater than 255 are displayed as C<\x{...}>, control characters (like C<\n>) are displayed as C<\x..>, and the rest of the characters as themselves: sub nice_string { join("", map { $_ > 255 ? # if wide character... sprintf("\\x{%04X}", $_) : # \x{...} chr($_) =~ /[[:cntrl:]]/ ? # else if control character ... sprintf("\\x%02X", $_) : # \x.. quotemeta(chr($_)) # else quoted or as themselves } unpack("U*", $_[0])); # unpack Unicode characters } For example, nice_string("foo\x{100}bar\n") returns the string 'foo\x{0100}bar\x0A' which is ready to be printed. =head2 Special Cases =over 4 =item * Bit Complement Operator ~ And vec() The bit complement operator C<~> may produce surprising results if used on strings containing characters with ordinal values above 255. In such a case, the results are consistent with the internal encoding of the characters, but not with much else. So don't do that. Similarly for C: you will be operating on the internally-encoded bit patterns of the Unicode characters, not on the code point values, which is very probably not what you want. =item * Peeking At Perl's Internal Encoding Normal users of Perl should never care how Perl encodes any particular Unicode string (because the normal ways to get at the contents of a string with Unicode--via input and output--should always be via explicitly-defined I/O layers). But if you must, there are two ways of looking behind the scenes. One way of peeking inside the internal encoding of Unicode characters is to use C to get the bytes or C to display the bytes: # this prints c4 80 for the UTF-8 bytes 0xc4 0x80 print join(" ", unpack("H*", pack("U", 0x100))), "\n"; Yet another way would be to use the Devel::Peek module: perl -MDevel::Peek -e 'Dump(chr(0x100))' That shows the C flag in FLAGS and both the UTF-8 bytes and Unicode characters in C. See also later in this document the discussion about the C function. =back =head2 Advanced Topics =over 4 =item * String Equivalence The question of string equivalence turns somewhat complicated in Unicode: what do you mean by "equal"? (Is C equal to C?) The short answer is that by default Perl compares equivalence (C, C) based only on code points of the characters. In the above case, the answer is no (because 0x00C1 != 0x0041). But sometimes, any CAPITAL LETTER As should be considered equal, or even As of any case. The long answer is that you need to consider character normalization and casing issues: see L, Unicode Technical Reports #15 and #21, I and I, http://www.unicode.org/unicode/reports/tr15/ and http://www.unicode.org/unicode/reports/tr21/ As of Perl 5.8.0, the "Full" case-folding of I is implemented. =item * String Collation People like to see their strings nicely sorted--or as Unicode parlance goes, collated. But again, what do you mean by collate? (Does C come before or after C?) The short answer is that by default, Perl compares strings (C, C, C, C, C) based only on the code points of the characters. In the above case, the answer is "after", since C<0x00C1> > C<0x00C0>. The long answer is that "it depends", and a good answer cannot be given without knowing (at the very least) the language context. See L, and I http://www.unicode.org/unicode/reports/tr10/ =back =head2 Miscellaneous =over 4 =item * Character Ranges and Classes Character ranges in regular expression character classes (C) and in the C (also known as C) operator are not magically Unicode-aware. What this means that C<[A-Za-z]> will not magically start to mean "all alphabetic letters"; not that it does mean that even for 8-bit characters, you should be using C in that case. For specifying character classes like that in regular expressions, you can use the various Unicode properties--C<\pL>, or perhaps C<\p{Alphabetic}>, in this particular case. You can use Unicode code points as the end points of character ranges, but there is no magic associated with specifying a certain range. For further information--there are dozens of Unicode character classes--see L. =item * String-To-Number Conversions Unicode does define several other decimal--and numeric--characters besides the familiar 0 to 9, such as the Arabic and Indic digits. Perl does not support string-to-number conversion for digits other than ASCII 0 to 9 (and ASCII a to f for hexadecimal). =back =head2 Questions With Answers =over 4 =item * Will My Old Scripts Break? Very probably not. Unless you are generating Unicode characters somehow, old behaviour should be preserved. About the only behaviour that has changed and which could start generating Unicode is the old behaviour of C where supplying an argument more than 255 produced a character modulo 255. C, for example, was equal to C or "-" (in ASCII), now it is LATIN CAPITAL LETTER I WITH BREVE. =item * How Do I Make My Scripts Work With Unicode? Very little work should be needed since nothing changes until you generate Unicode data. The most important thing is getting input as Unicode; for that, see the earlier I/O discussion. =item * How Do I Know Whether My String Is In Unicode? You shouldn't care. No, you really shouldn't. No, really. If you have to care--beyond the cases described above--it means that we didn't get the transparency of Unicode quite right. Okay, if you insist: print utf8::is_utf8($string) ? 1 : 0, "\n"; But note that this doesn't mean that any of the characters in the string are necessary UTF-8 encoded, or that any of the characters have code points greater than 0xFF (255) or even 0x80 (128), or that the string has any characters at all. All the C does is to return the value of the internal "utf8ness" flag attached to the C<$string>. If the flag is off, the bytes in the scalar are interpreted as a single byte encoding. If the flag is on, the bytes in the scalar are interpreted as the (multi-byte, variable-length) UTF-8 encoded code points of the characters. Bytes added to an UTF-8 encoded string are automatically upgraded to UTF-8. If mixed non-UTF-8 and UTF-8 scalars are merged (double-quoted interpolation, explicit concatenation, and printf/sprintf parameter substitution), the result will be UTF-8 encoded as if copies of the byte strings were upgraded to UTF-8: for example, $a = "ab\x80c"; $b = "\x{100}"; print "$a = $b\n"; the output string will be UTF-8-encoded C, but C<$a> will stay byte-encoded. Sometimes you might really need to know the byte length of a string instead of the character length. For that use either the C function or the C pragma and its only defined function C: my $unicode = chr(0x100); print length($unicode), "\n"; # will print 1 require Encode; print length(Encode::encode_utf8($unicode)), "\n"; # will print 2 use bytes; print length($unicode), "\n"; # will also print 2 # (the 0xC4 0x80 of the UTF-8) =item * How Do I Detect Data That's Not Valid In a Particular Encoding? Use the C package to try converting it. For example, use Encode 'encode_utf8'; if (encode_utf8($string_of_bytes_that_I_think_is_utf8)) { # valid } else { # invalid } For UTF-8 only, you can use: use warnings; @chars = unpack("U0U*", $string_of_bytes_that_I_think_is_utf8); If invalid, a C warning is produced. The "U0" means "expect strictly UTF-8 encoded Unicode". Without that the C would accept also data like C), similarly to the C as we saw earlier. =item * How Do I Convert Binary Data Into a Particular Encoding, Or Vice Versa? This probably isn't as useful as you might think. Normally, you shouldn't need to. In one sense, what you are asking doesn't make much sense: encodings are for characters, and binary data are not "characters", so converting "data" into some encoding isn't meaningful unless you know in what character set and encoding the binary data is in, in which case it's not just binary data, now is it? If you have a raw sequence of bytes that you know should be interpreted via a particular encoding, you can use C: use Encode 'from_to'; from_to($data, "iso-8859-1", "utf-8"); # from latin-1 to utf-8 The call to C changes the bytes in C<$data>, but nothing material about the nature of the string has changed as far as Perl is concerned. Both before and after the call, the string C<$data> contains just a bunch of 8-bit bytes. As far as Perl is concerned, the encoding of the string remains as "system-native 8-bit bytes". You might relate this to a fictional 'Translate' module: use Translate; my $phrase = "Yes"; Translate::from_to($phrase, 'english', 'deutsch'); ## phrase now contains "Ja" The contents of the string changes, but not the nature of the string. Perl doesn't know any more after the call than before that the contents of the string indicates the affirmative. Back to converting data. If you have (or want) data in your system's native 8-bit encoding (e.g. Latin-1, EBCDIC, etc.), you can use pack/unpack to convert to/from Unicode. $native_string = pack("C*", unpack("U*", $Unicode_string)); $Unicode_string = pack("U*", unpack("C*", $native_string)); If you have a sequence of bytes you B is valid UTF-8, but Perl doesn't know it yet, you can make Perl a believer, too: use Encode 'decode_utf8'; $Unicode = decode_utf8($bytes); You can convert well-formed UTF-8 to a sequence of bytes, but if you just want to convert random binary data into UTF-8, you can't. B. You can use C for the former, and you can create well-formed Unicode data by C. =item * How Do I Display Unicode? How Do I Input Unicode? See http://www.alanwood.net/unicode/ and http://www.cl.cam.ac.uk/~mgk25/unicode.html =item * How Does Unicode Work With Traditional Locales? In Perl, not very well. Avoid using locales through the C pragma. Use only one or the other. But see L for the description of the C<-C> switch and its environment counterpart, C<$ENV{PERL_UNICODE}> to see how to enable various Unicode features, for example by using locale settings. =back =head2 Hexadecimal Notation The Unicode standard prefers using hexadecimal notation because that more clearly shows the division of Unicode into blocks of 256 characters. Hexadecimal is also simply shorter than decimal. You can use decimal notation, too, but learning to use hexadecimal just makes life easier with the Unicode standard. The C notation uses hexadecimal, for example. The C<0x> prefix means a hexadecimal number, the digits are 0-9 I a-f (or A-F, case doesn't matter). Each hexadecimal digit represents four bits, or half a byte. C will show a hexadecimal number in decimal, and C will show a decimal number in hexadecimal. If you have just the "hex digits" of a hexadecimal number, you can use the C function. print 0x0009, "\n"; # 9 print 0x000a, "\n"; # 10 print 0x000f, "\n"; # 15 print 0x0010, "\n"; # 16 print 0x0011, "\n"; # 17 print 0x0100, "\n"; # 256 print 0x0041, "\n"; # 65 printf "%x\n", 65; # 41 printf "%#x\n", 65; # 0x41 print hex("41"), "\n"; # 65 =head2 Further Resources =over 4 =item * Unicode Consortium http://www.unicode.org/ =item * Unicode FAQ http://www.unicode.org/unicode/faq/ =item * Unicode Glossary http://www.unicode.org/glossary/ =item * Unicode Useful Resources http://www.unicode.org/unicode/onlinedat/resources.html =item * Unicode and Multilingual Support in HTML, Fonts, Web Browsers and Other Applications http://www.alanwood.net/unicode/ =item * UTF-8 and Unicode FAQ for Unix/Linux http://www.cl.cam.ac.uk/~mgk25/unicode.html =item * Legacy Character Sets http://www.czyborra.com/ http://www.eki.ee/letter/ =item * The Unicode support files live within the Perl installation in the directory $Config{installprivlib}/unicore in Perl 5.8.0 or newer, and $Config{installprivlib}/unicode in the Perl 5.6 series. (The renaming to F was done to avoid naming conflicts with lib/Unicode in case-insensitive filesystems.) The main Unicode data file is F (or F in Perl 5.6.1.) You can find the C<$Config{installprivlib}> by perl "-V:installprivlib" You can explore various information from the Unicode data files using the C module. =back =head1 UNICODE IN OLDER PERLS If you cannot upgrade your Perl to 5.8.0 or later, you can still do some Unicode processing by using the modules C, C, and C, available from CPAN. If you have the GNU recode installed, you can also use the Perl front-end C for character conversions. The following are fast conversions from ISO 8859-1 (Latin-1) bytes to UTF-8 bytes and back, the code works even with older Perl 5 versions. # ISO 8859-1 to UTF-8 s/([\x80-\xFF])/chr(0xC0|ord($1)>>6).chr(0x80|ord($1)&0x3F)/eg; # UTF-8 to ISO 8859-1 s/([\xC2\xC3])([\x80-\xBF])/chr(ord($1)<<6&0xC0|ord($2)&0x3F)/eg; =head1 SEE ALSO L, L, L, L, L, L, L, L, L, L, L =head1 ACKNOWLEDGMENTS Thanks to the kind readers of the perl5-porters@perl.org, perl-unicode@perl.org, linux-utf8@nl.linux.org, and unicore@unicode.org mailing lists for their valuable feedback. =head1 AUTHOR, COPYRIGHT, AND LICENSE Copyright 2001-2002 Jarkko Hietaniemi Ejhi@iki.fiE This document may be distributed under the same terms as Perl itself.