perlmod - Perl modules (packages and symbol tables)
Perl provides a mechanism for alternative namespaces to protect packages from stomping on each other's variables. In fact, there's really no such thing as a global variable in Perl . The package statement declares the compilation unit as being in the given namespace. The scope of the package declaration is from the declaration itself through the end of the enclosing block, eval
, or file, whichever comes first (the same scope as the my() and local() operators). Unqualified dynamic identifiers will be in this namespace, except for those few identifiers that if unqualified, default to the main package instead of the current one as described below. A package statement affects only dynamic variables--including those you've used local() on--but not lexical variables created with my(). Typically it would be the first declaration in a file included by the do
, require
, or use
operators. You can switch into a package in more than one place; it merely influences which symbol table is used by the compiler for the rest of that block. You can refer to variables and filehandles in other packages by prefixing the identifier with the package name and a double colon: $Package::Variable
. If the package name is null, the main
package is assumed. That is, $::sail
is equivalent to $main::sail
.
The old package delimiter was a single quote, but double colon is now the preferred delimiter, in part because it's more readable to humans, and in part because it's more readable to emacs macros. It also makes C++ programmers feel like they know what's going on--as opposed to using the single quote as separator, which was there to make Ada programmers feel like they knew what's going on. Because the old-fashioned syntax is still supported for backwards compatibility, if you try to use a string like "This is $owner's house"
, you'll be accessing $owner::s
; that is, the $s variable in package owner
, which is probably not what you meant. Use braces to disambiguate, as in "This is ${owner}'s house"
.
Packages may themselves contain package separators, as in $OUTER::INNER::var
. This implies nothing about the order of name lookups, however. There are no relative packages: all symbols are either local to the current package, or must be fully qualified from the outer package name down. For instance, there is nowhere within package OUTER
that $INNER::var
refers to $OUTER::INNER::var
. It would treat package INNER
as a totally separate global package.
Only identifiers starting with letters (or underscore) are stored in a package's symbol table. All other symbols are kept in package main
, including all punctuation variables, like $_. In addition, when unqualified, the identifiers STDIN, STDOUT, STDERR, ARGV, ARGVOUT, ENV, INC, and SIG are forced to be in package main
, even when used for other purposes than their built-in one. If you have a package called m
, s
, or y
, then you can't use the qualified form of an identifier because it would be instead interpreted as a pattern match, a substitution, or a transliteration.
Variables beginning with underscore used to be forced into package main, but we decided it was more useful for package writers to be able to use leading underscore to indicate private variables and method names. $_ is still global though. See also "Technical Note on the Syntax of Variable Names" in perlvar.
eval
ed strings are compiled in the package in which the eval() was compiled. (Assignments to $SIG{}
, however, assume the signal handler specified is in the main
package. Qualify the signal handler name if you wish to have a signal handler in a package.) For an example, examine perldb.pl in the Perl library. It initially switches to the DB
package so that the debugger doesn't interfere with variables in the program you are trying to debug. At various points, however, it temporarily switches back to the main
package to evaluate various expressions in the context of the main
package (or wherever you came from). See perldebug.
The special symbol __PACKAGE__
contains the current package, but cannot (easily) be used to construct variables.
See perlsub for other scoping issues related to my() and local(), and perlref regarding closures.
The symbol table for a package happens to be stored in the hash of that name with two colons appended. The main symbol table's name is thus %main::
, or %::
for short. Likewise symbol table for the nested package mentioned earlier is named %OUTER::INNER::
.
The value in each entry of the hash is what you are referring to when you use the *name
typeglob notation. In fact, the following have the same effect, though the first is more efficient because it does the symbol table lookups at compile time:
local *main::foo = *main::bar;
local $main::{foo} = $main::{bar};
You can use this to print out all the variables in a package, for instance. The standard but antequated dumpvar.pl library and the CPAN module Devel::Symdump make use of this.
Assignment to a typeglob performs an aliasing operation, i.e.,
*dick = *richard;
causes variables, subroutines, formats, and file and directory handles accessible via the identifier richard
also to be accessible via the identifier dick
. If you want to alias only a particular variable or subroutine, assign a reference instead:
*dick = \$richard;
Which makes $richard and $dick the same variable, but leaves @richard and @dick as separate arrays. Tricky, eh?
This mechanism may be used to pass and return cheap references into or from subroutines if you won't want to copy the whole thing. It only works when assigning to dynamic variables, not lexicals.
%some_hash = (); # can't be my()
*some_hash = fn( \%another_hash );
sub fn {
local *hashsym = shift;
# now use %hashsym normally, and you
# will affect the caller's %another_hash
my %nhash = (); # do what you want
return \%nhash;
}
On return, the reference will overwrite the hash slot in the symbol table specified by the *some_hash typeglob. This is a somewhat tricky way of passing around references cheaply when you won't want to have to remember to dereference variables explicitly.
Another use of symbol tables is for making "constant" scalars.
*PI = \3.14159265358979;
Now you cannot alter $PI, which is probably a good thing all in all. This isn't the same as a constant subroutine, which is subject to optimization at compile-time. This isn't. A constant subroutine is one prototyped to take no arguments and to return a constant expression. See perlsub for details on these. The use constant
pragma is a convenient shorthand for these.
You can say *foo{PACKAGE}
and *foo{NAME}
to find out what name and package the *foo symbol table entry comes from. This may be useful in a subroutine that gets passed typeglobs as arguments:
sub identify_typeglob {
my $glob = shift;
print 'You gave me ', *{$glob}{PACKAGE}, '::', *{$glob}{NAME}, "\n";
}
identify_typeglob *foo;
identify_typeglob *bar::baz;
This prints
You gave me main::foo
You gave me bar::baz
The *foo{THING}
notation can also be used to obtain references to the individual elements of *foo, see perlref.
Subroutine definitions (and declarations, for that matter) need not necessarily be situated in the package whose symbol table they occupy. You can define a subroutine outside its package by explicitly qualifying the name of the subroutine:
package main;
sub Some_package::foo { ... } # &foo defined in Some_package
This is just a shorthand for a typeglob assignment at compile time:
BEGIN { *Some_package::foo = sub { ... } }
and is not the same as writing:
{
package Some_package;
sub foo { ... }
}
In the first two versions, the body of the subroutine is lexically in the main package, not in Some_package. So something like this:
package main;
$Some_package::name = "fred";
$main::name = "barney";
sub Some_package::foo {
print "in ", __PACKAGE__, ": \$name is '$name'\n";
}
Some_package::foo();
prints:
in main: $name is 'barney'
rather than:
in Some_package: $name is 'fred'
This also has implications for the use of the SUPER:: qualifier (see perlobj).
Four special subroutines act as package constructors and destructors. These are the BEGIN
, CHECK
, INIT
, and END
routines. The sub
is optional for these routines.
A BEGIN
subroutine is executed as soon as possible, that is, the moment it is completely defined, even before the rest of the containing file is parsed. You may have multiple BEGIN
blocks within a file--they will execute in order of definition. Because a BEGIN
block executes immediately, it can pull in definitions of subroutines and such from other files in time to be visible to the rest of the file. Once a BEGIN
has run, it is immediately undefined and any code it used is returned to Perl's memory pool. This means you can't ever explicitly call a BEGIN
.
An END
subroutine is executed as late as possible, that is, after perl has finished running the program and just before the interpreter is being exited, even if it is exiting as a result of a die() function. (But not if it's polymorphing into another program via exec
, or being blown out of the water by a signal--you have to trap that yourself (if you can).) You may have multiple END
blocks within a file--they will execute in reverse order of definition; that is: last in, first out (LIFO). END
blocks are not executed when you run perl with the -c
switch.
Inside an END
subroutine, $?
contains the value that the program is going to pass to exit()
. You can modify $?
to change the exit value of the program. Beware of changing $?
by accident (e.g. by running something via system
).
Similar to BEGIN
blocks, INIT
blocks are run just before the Perl runtime begins execution, in "first in, first out" (FIFO) order. For example, the code generators documented in perlcc make use of INIT
blocks to initialize and resolve pointers to XSUBs.
Similar to END
blocks, CHECK
blocks are run just after the Perl compile phase ends and before the run time begins, in LIFO order. CHECK
blocks are again useful in the Perl compiler suite to save the compiled state of the program.
When you use the -n and -p switches to Perl, BEGIN
and END
work just as they do in awk, as a degenerate case. As currently implemented (and subject to change, since its inconvenient at best), both BEGIN
and<END> blocks are run when you use the -c switch for a compile-only syntax check, although your main code is not.
There is no special class syntax in Perl, but a package may act as a class if it provides subroutines to act as methods. Such a package may also derive some of its methods from another class (package) by listing the other package name(s) in its global @ISA array (which must be a package global, not a lexical).
For more on this, see perltoot and perlobj.
A module is just a set of related function in a library file a Perl package with the same name as the file. It is specifically designed to be reusable by other modules or programs. It may do this by providing a mechanism for exporting some of its symbols into the symbol table of any package using it. Or it may function as a class definition and make its semantics available implicitly through method calls on the class and its objects, without explicitly exportating anything. Or it can do a little of both.
For example, to start a traditional, non-OO module called Some::Module, create a file called Some/Module.pm and start with this template:
package Some::Module; # assumes Some/Module.pm
use strict;
use warnings;
BEGIN {
use Exporter ();
our ($VERSION, @ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS);
# set the version for version checking
$VERSION = 1.00;
# if using RCS/CVS, this may be preferred
$VERSION = do { my @r = (q$Revision: 2.21 $ =~ /\d+/g); sprintf "%d."."%02d" x $#r, @r }; # must be all one line, for MakeMaker
@ISA = qw(Exporter);
@EXPORT = qw(&func1 &func2 &func4);
%EXPORT_TAGS = ( ); # eg: TAG => [ qw!name1 name2! ],
# your exported package globals go here,
# as well as any optionally exported functions
@EXPORT_OK = qw($Var1 %Hashit &func3);
}
our @EXPORT_OK;
# non-exported package globals go here
our @more;
our $stuff;
# initialize package globals, first exported ones
$Var1 = '';
%Hashit = ();
# then the others (which are still accessible as $Some::Module::stuff)
$stuff = '';
@more = ();
# all file-scoped lexicals must be created before
# the functions below that use them.
# file-private lexicals go here
my $priv_var = '';
my %secret_hash = ();
# here's a file-private function as a closure,
# callable as &$priv_func; it cannot be prototyped.
my $priv_func = sub {
# stuff goes here.
};
# make all your functions, whether exported or not;
# remember to put something interesting in the {} stubs
sub func1 {} # no prototype
sub func2() {} # proto'd void
sub func3($$) {} # proto'd to 2 scalars
# this one isn't exported, but could be called!
sub func4(\%) {} # proto'd to 1 hash ref
END { } # module clean-up code here (global destructor)
## YOUR CODE GOES HERE
1; # don't forget to return a true value from the file
Then go on to declare and use your variables in functions without any qualifications. See Exporter and the perlmodlib for details on mechanics and style issues in module creation.
Perl modules are included into your program by saying
use Module;
or
use Module LIST;
This is exactly equivalent to
BEGIN { require Module; import Module; }
or
BEGIN { require Module; import Module LIST; }
As a special case
use Module ();
is exactly equivalent to
BEGIN { require Module; }
All Perl module files have the extension .pm. The use
operator assumes this so you don't have to spell out "Module.pm" in quotes. This also helps to differentiate new modules from old .pl and .ph files. Module names are also capitalized unless they're functioning as pragmas; pragmas are in effect compiler directives, and are sometimes called "pragmatic modules" (or even "pragmata" if you're a classicist).
The two statements:
require SomeModule;
require "SomeModule.pm";
differ from each other in two ways. In the first case, any double colons in the module name, such as Some::Module
, are translated into your system's directory separator, usually "/". The second case does not, and would have to be specified literally. The other difference is that seeing the first require
clues in the compiler that uses of indirect object notation involving "SomeModule", as in $ob = purge SomeModule
, are method calls, not function calls. (Yes, this really can make a difference.)
Because the use
statement implies a BEGIN
block, the importing of semantics happens as soon as the use
statement is compiled, before the rest of the file is compiled. This is how it is able to function as a pragma mechanism, and also how modules are able to declare subroutines that are then visible as list or unary operators for the rest of the current file. This will not work if you use require
instead of use
. With require
you can get into this problem:
require Cwd; # make Cwd:: accessible
$here = Cwd::getcwd();
use Cwd; # import names from Cwd::
$here = getcwd();
require Cwd; # make Cwd:: accessible
$here = getcwd(); # oops! no main::getcwd()
In general, use Module ()
is recommended over require Module
, because it determines module availability at compile time, not in the middle of your program's execution. An exception would be if two modules each tried to use
each other, and each also called a function from that other module. In that case, it's easy to use require
s instead.
Perl packages may be nested inside other package names, so we can have package names containing ::
. But if we used that package name directly as a filename it would makes for unwieldy or impossible filenames on some systems. Therefore, if a module's name is, say, Text::Soundex
, then its definition is actually found in the library file Text/Soundex.pm.
Perl modules always have a .pm file, but there may also be dynamically linked executables (often ending in .so) or autoloaded subroutine definitions (often ending in .al associated with the module. If so, these will be entirely transparent to the user of the module. It is the responsibility of the .pm file to load (or arrange to autoload) any additional functionality. For example, although the POSIX module happens to do both dynamic loading and autoloading, but the user can say just use POSIX
to get it all.
See perlmodlib for general style issues related to building Perl modules and classes, as well as descriptions of the standard library and CPAN, Exporter for how Perl's standard import/export mechanism works, perltoot and perltootc for an in-depth tutorial on creating classes, perlobj for a hard-core reference document on objects, perlsub for an explanation of functions and scoping, and perlxstut and perlguts for more information on writing extension modules.